
February, 2000

Advisor Answers

Disabling OptionGroups

Visual FoxPro 6.0

Q: When an OptionGroup's Enabled property is set to .F., the buttons look no different
than when it's .T. Is there a way to give a user a visual indication that the group has

been disabled?

–Barbara Peisch, San Diego, CA

A: You're absolutely right. When you disable an OptionGroup, the display of the buttons
in that group doesn't change. However, when you disable an individual button, it does

dim. So, the solution is to pass the disable message on to the buttons in the group. It's
easy to do so, using the SetAll method of the option group, like this:

This.SetAll("Enabled",.F.)

The corresponding command to re-enable the group is:

This.SetAll("Enabled",.T.)

In VFP 6, the best place to do this is in an Assign method for the Enabled property of the
OptionGroup. That way, you can be sure it happens every time the Enabled property

changes.

But what if some of the buttons in the group are disabled before the group as a whole is

disabled? Issuing the two SetAll commands leaves them Enabled afterward. If you want
to keep track of the prior state of the buttons and restore them, you have to do a little

more work.

I've combined all this into a custom OptionGroup class called opgEnable. It uses a

custom array property, aButtonStatus, and a logical property, lStatusSaved, to keep
track of the individual buttons. The Assign method uses the SetAll call and uses two

helper methods (SaveStatus and RestoreStatus) to handle the tracking. Here's the code:

* Enabled_Assign
LPARAMETERS vNewVal
* Allow you to enable and disable the group as a whole.

* Make sure buttons get saved initially
IF NOT This.lStatusSaved
 This.SaveStatus()
ENDIF

This.SetAll("Enabled", m.vNewVal)

IF m.vNewVal
 This.RestoreStatus()
ENDIF

THIS.Enabled = m.vNewVal

RETURN

The Assign method first saves the status of the individual buttons, if it's not already
saved. SaveStatus is called to go through all the buttons and store their current status

(enabled or disabled) to the array This.aButtonStatus. Then, whether the group is being
enabled or disabled, SetAll is used to change Enabled for all the buttons. Then, if the

group is being enabled, RestoreStatus loops through all the buttons, restoring their prior
status from This.aButtonStatus. Finally, the group's Enabled property is set to the new

value.

The lStatusSaved property allows us to make sure we don't overwrite the stored button

status, if for some reason the group's Enabled property is set to .F. twice (or more) in a

row. (Consider what would happen if the SaveStatus method were called twice. By
checking This.lStatusSaved beforehand, we ensure that it's executed only the first time

the Assign method is called for a given disabling of the group.)

Here's the code for SaveStatus and RestoreStatus:

* SaveStatus
* Save the current state of the buttons
LOCAL nButtonNumber

IF This.ButtonCount > 0
 DIMENSION This.aButtonStatus[This.ButtonCount]
 FOR nButtonNumber = 1 TO This.ButtonCount
 This.aButtonStatus[nButtonNumber] = ;
 This.Buttons[nButtonNumber].Enabled
 ENDFOR
 This.lStatusSaved = .T.
ENDIF

RETURN

*RestoreStatus
* Restore buttons' prior status
IF This.ButtonCount > 0
 FOR nButtonNumber = 1 TO This.ButtonCount
 This.Buttons[nButtonNumber].Enabled = ;
 This.aButtonStatus[nButtonNumber]
 ENDFOR

 * Once status has been restored, reset lStatusSaved
 * so we save it again the next time.
 This.lStatusSaved = .F.
ENDIF

Figure 1 shows a form containing an option group with two disabled buttons. Figure 2

shows the same form when you disable the entire group. When you enable the group
again, it restores the configuration shown in figure 1. The form also contains a set of

checkboxes mapped to the individual option buttons. Check and uncheck them to
change which buttons are enabled initially, then disable and enable the group again and

you can see that the group really does keep track of which buttons are currently
enabled.

Figure 1. Partially disabled option group – When an option group has some buttons disabled, disabling
and then re-enabling the whole group needs to respect the original state of those buttons.

Figure 2. Disabled option group – To disable an entire option group, use an Assign method for the group's
Enabled property.

This month's Professional Resource CD contains OptionGroup.VCX, a class library

containing opgEnable, as well as the example form shown in figures 1 and 2.

–Tamar

